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Abstract. Recognizing a face with significant lighting, disguise and oc-
clusion variations is an interesting and challenging problem in pattern
recognition. To address this problem, many regression based methods,
represented by sparse representation classifier (SRC), are presented re-
cently. SRC uses the L1-norm to characterize the pixel-level sparse noise
but ignore the spatial information of noise. In this paper, we find that
nuclear-norm is good for characterizing image-wise structural noise, and
thus we use the nuclear norm and L1-norm to jointly characterize the
error image in regression model. Our experimental results demonstrate
that the proposed method is more effective than state-of-the-art regres-
sion methods for face reconstruction and recognition.

1 Introduction

Face recognition is closely related to our life, which has been applied widely
to information security, law enforcement and surveillance, smart cards, access
control, etc. However, recognizing a face with significant lighting, disguiseand
occlusion variations is still a challenging problem in pattern recognition.

Recently, a number of methods have been developed to address this problem.
Among them, sparse Representation Coding (SRC) [1] is the most attractive and
receiving more and more attention. In fact, SRC can be considered as a gener-
alization of nearest feature classifiers, which strikes a balance between NN [2]
and NFS [3]. Differing from these classifiers, the representation of SRC is global,
using all the training data as a dictionary, and the classification is performed
by checking which class yields the least coding error. Because of its simplicity
and effectiveness, SRC has been applied and investigated extensively. In order to
further improve the robustness of sparse coding, an extended SRC [4] and some
re-weighted L1 or L2 minimization algorithms [5], [6] were presented. Zhang et
al. [7] have shown that it is the collaborative representation (CR) but not the
L1-norm sparse constraint that truly improves the FR performance. Yang et
al. [8] re-examined the role of L1-optimizer and found that for pattern recog-
nition tasks, L1-optimizer provides more meaningful classification information
(e.g. closeness) than L0-optimizer does. Meanwhile, integrating sparse coding
with other methods is also a meaningful effort. For example, Yang et al. [9] pro-
posed sparse representation classifier steered discriminative projection. Zheng et
al. [10] performed SRC in low rank projection with discrimination.
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The characterization of the residual term plays a key role in regression model
based face recognition Methods. Linear regression based classifier (LRC) [11] uses
L2- norm to characterize the coding residual, while SRC uses L1- norm. Yang
et al. [12] presented robust sparse coding (RSC), which uses an M-estimator
to fit the general noises. He et al. [13] proposed a correntropy based sparse
representation (CESR) scheme by virtue of the correntropy induced metric for
describing residual. Essentially, the core idea of Yang et al. [12] and He et al.
[13] is to use a robust estimator to generate the new variables in accordance
with the known distributions. Li et al. [14] explored the structure of the error
incurred by occlusion and measured errors by the weighted L1 metric. K. Jia et
al. [15] introduced a class of structured sparsity-inducing norms into the SRC
framework to fit these structural noises.Yang et al. [16] used nuclear norm to
describe the residual term and proposed a nuclear norm based matrix regression
(NMR) model, which has been shown that NMR is robust to face recognition
with occlusion and illumination changes.

From the probability distribution point of view, we know that L1-norm pro-
vides an optimal characterization for errors with the Laplace distribution. There-
fore, SRC (with L1-norm) generally performs well for the sparse noise which on
the whole follows the Laplace distribution. However, in practice, some noises
caused by occlusions, disguise or illumination does not follow Laplacian distri-
bution (see the example in Fig.1). Thus, L1-norm is not enough for error char-
acterization. In this paper, we find that the singular values of the error image
fit Laplace distribution well in real-world disguises, occlusions, or illumination
induced error images. Thus, we can use L1-norm of the singular value vector, i.e.,
nuclear norm of the error image, to characterize this kind of structural noises.
To handle the pixel-level sparse noise and image-level structural noise together,
we will use two norms, i.e., nuclear norm and L1-norm, to jointly characterize
the error image in our regression model.

The proposed nuclear-L1 norm joint regression model can be solved by using
alternating direction method of multipliers (ADMM). In each step of the algo-
rithm, a closed-form solution can be obtained by fixing the other variables. In
general, the complexity of the proposed algorithm is much lower than SRC or
RSC. In addition, nuclear norm is used as a metric to characterize the distance
between test samples and classes, which is different from the previous method-
s using of the Euclidean (L2)-norm.We perform experiments on the Extended
Yale B and AR databases, the results demonstrate that the proposed method
is more effective than state-of-the-art regression methods for face reconstruction
and recognition.

The remainder of this paper is structured as follows: In Section 2, we first
introduce our model, i.e., the nuclear-L1 norm joint regression (NL1R) model.
In Section 3, we solve the proposed model by virtue of ADMM. In Section 4,
we study the complexity of our algorithm. In Section 5, we design the NL1R
based classifier. In Section 6, we present a series of experiments to demonstrate
the robustness effectiveness of the proposed algorithm. In Section 7, we conclude
the paper with a brief conclusion.
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2 Problem Formulation

Given a set of n observed 2D data matrices A1, · · · ,An ∈ Rp×q and a matrix
D ∈ Rp×q, let us represent B linearly using A1, · · · ,An, i.e., D = x1A1 +
x2A2+, · · · ,+xnAn + E, where x1, x2, · · · , xn is a set of representation coef-
ficients, x1A1 + x2A2+, · · · ,+xnAn is the reconstructed image and E is the
representation residual. Let us denote the following linear mapping from Rn to
Rp×q: A(x) = x1A1 + x2A2+, · · · ,+xnAn, where x = [x1, x2, · · · , xn]

T
. Then,

we will consider the following model

min
E,x

∥E∥ s.t. A(x)−D = E, (1)

where ∥·∥ is a norm.
It is crucial that which norm should be chosen to characterize the error ma-

trix E better. It’s well-known that if errors are independently and identically
distributed with Laplacian(or Gaussian), then L1(or L2)-norm is optimal for
characterizing the errors (a proof is in [12]). This means there must exist some
close relationship between the error (or residual) metric and error distribution.
Figure 1(a) shows an original image with scarf. One can decompose (a) into
the recovered term (b) and noise term (c). Figure 2(a) delineates the empirical
and fitted distributions of noise term E by using Gaussian or Laplacian dis-
tribution model. We can see that Gaussian and Laplacian distribution are far
away from the empirical distribution. So, L2-norm (or L1-norm) based method
can not describe the noise matrix effectively. Instead, Figure 2(b) shows that
singular values of noise matrix E follow Laplacian distribution well. And this
trend becomes more stable and evident with the increase of the size of images.
In addition, for other noises caused by occlusion and illumination, we obtain the
similar result.

Thus, it’s reasonable that we assume that the singular values of error matrix
are independently and identically distributed with Laplacian distribution, i.e.,

δi ∼ pθ (δi) =
1
2b exp(− |δi − µ| /b), (2)

where δ1 ≥ δ2 ≥ · · · ≥ δn are the all singular values of error matrix E, θ = (µ, b).
Thus, the likelihood function of the estimator is that

n∏
i=1

pθ (δi) =
1

(2b)n exp(−
n∑

i=1

|δi − µ|/b). (3)

By taking the logarithm, we obtain that

ln

n∏
i=1

pθ (δi) = −
n∑

i=1

|δi − µ| /b+ ln 1
(2b)n . (4)

For convenience, we can assume µ = 0, b = 1. According to the maximum likeli-

hood criterion, we need to maximizing ln
n∏

i=1

pθ (δi), which is equal to minimizing



4 Lei Luo, Jian Yang, Jianjun Qian, and Ying Tai

(a) (b) (c)

Fig. 1. (a) Original image; (b) recovered image; (c) noise image E
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Fig. 2. (a) The empirical distribution and the fitted distribution of the noise image E;
(b) The empirical distribution and the fitted distribution of the singular value vector
of noise image E

n∑
i=1

|δi|, thus,

min
n∑

i=1

|δi| = min |δ|1 = min ∥E∥∗. (5)

Therefore, under this assumption, nuclear norm can be chosen as a proper
descriptor to characterize structural noises. Certainly, for some sparse noises,
which follow Laplacian distribution, the L1-norm is an optimal choice. In order
to keep the advantage of L1-norm, we can use L1-norm as a regularized term
to further improve the performance of nuclear norm, which yields the following
model:

min
E,x

∥E∥∗ + α∥E∥1, s.t. A(x)−D = E, (6)

where α > 0 is a parameter. It is used to balance the nuclear norm and L1-norm.
The advantage of this method is that the metric based on different norms can

complement each other long for short, which prevents the limitation of the single
metric. Thus, the collaborative effect of nuclear-L1 norm will be suitable for
characterizing the reconstruction error (or the difference between occluded face
image and its ground truth)if we choose a proper parameter α. In Section 6, we
will further see that the joint use of two norms is robust for the characterization
of noises, and this method will fit more complicated noises.
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Furthermore, borrowing the idea of the ridge regression, we would like to
add a similar regularization term to Eq. (6) and obtain the regularized matrix
regression model based on nuclear-L1 norm:

min
E,x

∥E∥∗ + α∥E∥1 +
1

2
β ∥x∥22 , s.t. A(x)−D = E. (7)

The new objective function is non-smooth, but continuous and convex. For the
convenience, we introduce an auxiliary variable Z for the splitting, thus, (7) is
converted to the following equivalent problem:

min
E,Z,x

∥E∥∗ + α∥Z∥1 +
1

2
β ∥x∥22 , s.t. A(x)−D = E, E = Z. (8)

In (8), the new constraint E = Z guarantees the identity of E and Z, thus, Z
can be regarded as a proxy for E . We will discuss how to solve this model in
the following section.

3 Proposed Algorithm

The alternating direction method of multipliers (ADMM) or the augmented La-
grange multipliers (ALM) method was presented originally in [17], [18], which
has been studied extensively in the theoretical frameworks of Lagrangian func-
tions [19]. Recently, ADMM has been applied to the nuclear norm optimization
problems [20], [21], which updates the variables alternately by minimizing the
augmented Lagrangian function with respect to the variables in a Gauss-Seidel
manner. Here, we provide the process of using ADMM to solve the problem (8),
which is equal to minimizing the following augmented Lagrangian function:

Lµ = ∥E∥∗ + α∥Z∥1 +
1
2β ∥x∥22 + tr

(
Y1

T (A (x)−D−E)
)

+tr
(
Y2

T (E− Z)
)
+ µ

2

(
∥A(x)−D−E∥2F + ∥E− Z∥2F

)
,

(9)

where µ is a penalty parameter, Y1 and Y2 are the Lagrange multipliers. We
proceed by alternately fixing one variable and solving for the other, and iterating.
Then, the detailed algorithm for solving nuclear-L1 norm joint regression (NL1R)
model is summarized in Algorithm 1.

The key steps are to solve the optimization problems in step 2, 3 and 4. For
step 4, by taking the derivative w.r.t x for the objective function, and setting
the derivative to zero, we have the optimal solution of the sub-problem in step
4:

x = (µMTM+βI)−1MTVec(µD+µE− Z1), (10)

where M = [Vec(A1), · · · ,Vec(An)], Vec is an operator converting a matrix into
a vector.

For step 3, we need to introduce the following soft-thresholding (shrinkage)
operator:

Sε [x] =

x− ε, if x < ε,
x+ ε, if x > −ε,
0, otherwise,

(11)
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Algorithm 1 Solving NL1R by ADMM

Input: A set of matrices A1, · · · ,An and a matrix D ∈ Rp×q, the model parameters
α, β and the value of µ.
while not converged do
1. Initialize Z = Y1 = Y2 = 0, x = 0;
2. fix the others and update E by

E = argmin
E

1

µ
∥E∥∗ +

1

2

(∥∥∥∥E−
(
A(x)−D+

1

µ
Y1

)∥∥∥∥2
F

+

∥∥∥∥E−
(
Z− 1

µ
Y2

)∥∥∥∥2
F

)
;

3. fix the others and update Z by

Z = argmin
Z

α

µ
∥Z∥1 +

1

2

∥∥∥∥Z−
(
E+

1

µ
Y2

)∥∥∥∥2
F

;

4. fix the others and update x by

x = argmin
x

1

2
β ∥x∥22 +

µ

2

∥∥∥∥A(x)−D−E+
1

µ
Y1

∥∥∥∥2
F

;

5. update the multipliers Y1 = Y1 + µ (A (x)−D−E) and Y2 = Y2 + µ (E− Z) .
end while
Output: Optimal representation coefficient x and E, Z

where x ∈ R, and ε > 0, if we extend soft-thresholding operator to vectors or
matrices, then we have

Sε [W] = argmin ε∥X∥1
X

+1
2 ∥X−W∥2F . (12)

That is, the optimal solution of the sub-problem in step 3 is that:

Z = sgn(E+
1

µ
Y2) ◦max{

∣∣∣∣E+
1

µ
Y2

∣∣∣∣− α

µ
, 0}, (13)

where the symbolic function sgn (·) and the absolute value |·| act on the each
element of the matrix E+ 1

µY2 , and ◦ is the Hadamard product.

In the following, we consider how to solve the sub-problem in step 2.

Given a matrix Q ∈ Rp×q of rank r, the singular value decomposition (SVD)
of X is

Q = Up×rΣVT
q×r, Σ = diag(σ1, · · · , σr), (14)

where σ1, · · · , σr are positive singular values, and Up×r and Vq×r are corre-
sponding matrices with orthogonal columns. For a given τ > 0, the singular
value shrinkage operator is defined as follows

Dτ (Q) = Up×rdiag
(
{max(0, σj − τ)}1≤j≤r

)
VT

q×r. (15)
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Theorem 1. For each A,B ∈ Rp×q and τ > 0 , the singular value shrinkage
operator in (15) obeys

1

2
Dτ (A+B) = argmin

E
τ∥E∥∗ +

1

2

(
∥E−A∥2F + ∥E−B∥2F

)
. (16)

Proof: Since the function h0 (E) = τ∥E∥∗ + 1
2

(
∥E−A∥2F + ∥E−B∥2F

)
is

strictly convex, it is easy to see that there exists a unique minimizer, and we thus
need to prove that it is equal to 1

2Dτ (A+B). To do this, recall the definition
of a sub-gradient of a convex function f : Rn1×n2 → R .We say that J is a
sub-gradient of f at E0, denoted J ∈ ∂f (E0) , if

f (E) ≥ f (E0) + ⟨Z,E−E0⟩ (17)

for all E . Now
⌢

E minimizes h0 if and only if 0 is a sub-gradient of the functional

h0 at the point
⌢

E , i.e.

0 ∈
⌢

E−A+
⌢

E−B+ τ∂
∥∥∥⌢

E
∥∥∥
∗
= 2

⌢

E− (A+B) + τ∂
∥∥∥⌢

E
∥∥∥
∗
, (18)

where ∂
∥∥∥⌢

E
∥∥∥
∗
is the set of sub-gradients of the nuclear norm. Let E ∈ Rn1×n2

be an arbitrary matrix and UΣVT be its SVD. It is known that

∂∥E∥∗ ∈
{
UVT +W : W ∈ Rn1×n2 ,UTW = 0,WV = 0, ∥W∥2 ≤ 1

}
. (19)

Set
⌢

E = 1
2Dτ (A+B) for short. In order to show that

⌢

E obeys (17), decompose
the SVD of A+B as

A+B = U0Σ0V0
∗ +U1Σ1V

∗
1, (20)

where U0, V0 (resp. U1, V1 ) are the singular vectors associated with singular
values greater than τ (resp. smaller than or equal to τ ). With these notations,
we have

⌢

E =
1

2
U0 (Σ0 − τI)V∗

0, (21)

therefore,

A+B− 2
⌢

E = τ (U0V
∗
0 +W) ,W = τ−1U1Σ1V

∗
1. (22)

By definition, U∗
0W = 0,WV0 = 0 and since the diagonal elements of Σ1 have

magnitudes bounded by τ , we also have ∥W∥2 ≤ 1. HenceA+B−2
⌢

E ∈ τ∂
∥∥∥⌢

E
∥∥∥
∗
,

which concludes the proof.
Therefore, for the sub-problem in step 2, the optimal solution is that:

E =
1

2
D 1

µ

(
A(x)−D+

1

µ
Y1 + Z− 1

µ
Y2

)
(23)

It should be noted that (8) is different from low rank representation (LRR) [22],
because both original variable E and the auxiliary variable Z brought in are all in
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the objective function for model (8). The aim of LRR is subspace segmentation,
and the nuclear norm is the replacement of rank. But our model is based on face
reconstruction and recognition, which is from the view of regression. And the
nuclear norm is used to characterize the distribution of the singular values.

4 Complexity and Convergence Analysis

In this part, we discuss the time complexity of the proposed algorithm. It is
easy to see that the main running time of the proposed algorithm is consumed
by performing SVD on the small matrix of the size p × q , and some matrix
multiplications. In step 2, the time complexity of performing SVD is O

(
pq2

)
(we can assume that q ≤ p). The time complexity of matrix multiplications
is O

(
npq + n2

)
. Thus, the total time complexity of the proposed algorithm is

O
(
pq2 + npq + n2

)
. It is also reported that the commonly used L1-minimization

solvers have an empirical complexity of O
(
p2q2n1.3

)
and the complexity of RSC

with β = 1 is about O
(
p2q2n

)
, where n is the sample number [12]. Now, we

compare the complexity of RSC with Algorithm 1. Firstly, we can obtain that
pq2+npq+n2

p2q2n = 1
pn + 1

pq + n
p2q2 . In general, in the face recognition experiments,

pq ≥ 10, pn ≥ 10, thus, if n
p2q2 ≤ 4

5 , i.e., n ≤ 4
5p

2q2, then, our algorithm in
this paper will have much lower complexity. It is evident that this condition n ≤
4
5p

2q2 can be easily satisfied, for example, in our experiments, pq ≥ 10, pn ≥ 10.
This main reason for the lower complexity is that our model is based on matrix
computation directly, e.g., in step 2, we don’t need to convert the each sample
of train image into a vector.

The convergence properties of the ADMM have been generally discussed. For
more details, one may refer to [21], [23]. But in this paper, it is enough that we
only need to choose a proper termination parameters ε, and use the following
termination conditions:

∥A(x)−D−E∥∞ ≤ ε and ∥E− Z∥∞ ≤ ε. (24)

5 The Design of the Classifier

For the design of classifier, some new ideas should be noted, for example, Luan
et al. [24] introduced two descriptors, i.e., sparsity and smoothness, to represent
characteristic of the sparse error component, and applied them to face recogni-
tion. Li and Lu [25] proposed a new decision rule, i.e., sum of coefficient (SoC)
to match better with SRC. That is, they make full use of the information of the
objective function.

In this section, we will use nuclear norm as a metric to characterize the dis-
tance between test samples and classes. This is because nuclear norm is more
robust than Frobenius (L2)-norm as a distance metric [26]. Meanwhile, since re-
construction image of all training images can be regarded as the denoised image,
thus, we use it as the reference image of classification. That is, we first use Algo-
rithm 1 to obtain the optimal representation coefficients x∗ for a test image D,
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then use the reconstruction image A (x∗) of all training images as the new refer-
ence image of classification. In addition, let σi : R

n → Rn be the characteristic
function that selects the coefficients associated with the i-th class. For x ∈ Rn,
σi(x) is a vector whose only nonzero entries are the entries in x that are associat-
ed with Class i. Using the coefficients associated with the i-th class, one can get
the reconstruction of D in class i as D̂i = A(σi(x

∗)). Finally, the nuclear norm
of the representation residual is used to characterize the distance between recon-
struction image and classes, that is, ri (D) = ∥A(x∗)−A(σi (x

∗))∥∗ for i =
1, · · · k. Thus, we can define the following decision rule: if rl(D) = min

i
ri(D),

then D belongs to Class l.

Fig. 3. Fourteen samples of cropped images of one person for training on AR database

(a) Test image (b) SRC (c) CRC (d) RSC (e) CESR (f) NL1R

Fig. 4. Recovered clean image and occluded part via five methods for the image B
with white block image

(a) Test image (b) SRC (c) CRC (d) RSC (e) CESR (f) NL1R

Fig. 5. Recovered clean image and occluded part via five methods for the image B
with composite noise

Table 1. The comparison of the error rates(%) for face reconstruction via five methods
for the image B with two different cases (a) and (b) corresponding to Fig 4. and Fig.
5, respectively

Cases SRC CRC RSC CESR NL1R

(a) 33.43 33.42 0.38 15.30 3.5491× 10−9

(b) 31.84 31.84 0.18 4.02 8.7172× 10−4
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6 Experiment and Analysis

In this Section, we perform experiments on public face image databases and com-
pare the proposed model with state-of-the-art methods. Our aim is to demon-
strate the robustness NL1R to disguise, occlusion and illumination. Note that
here in SRC and RSC, the matlab function ”l1-ls” [6] is used to calculate the
sparse representation coefficients.

6.1 Databases

The AR face database [27] contains over 4,000 color face images of 126 people
(70 men and 56 women), including frontal views of faces with different facial ex-
pressions, lighting conditions and occlusions. The pictures of most persons were
taken in two sessions (separated by two weeks). Each section contains 13 color
images and 120 individuals (65 men and 55 women) participated in both session-
s. The images of these 120 individuals were selected and used in our experiment.
We manually cropped the face portion of the image and then normalized it to
50× 40 pixels.

The extended Yale B face database [28] contains 38 human subjects under
nine poses and 64 illumination conditions the light source direction and the
camera axis. The 64 images of a subject in a particular pose are acquired at
camera frame rate of 30 frames/s, so there is only small change in head pose and
facial expression for those 64 images. All frontal-face images marked with P00
are used, and each image is resized to 96× 84 pixels and 42× 48 pixels (only in
Subsection (6.4)), respectively.

6.2 Face Reconstruction

To evaluate the method proposed in this paper, some experiments for face recon-
struction will perform on AR face database. Given fourteen face images selected
from the AR face database, as shown in Fig. 3, which are used for training. We
choose the first image from training images denoted by B as the original image.
The original image with artificial occlusion is used as the testing image. For
the artificial occlusion, we choose the cases: (a) white block image, (b) random
sparse noise plus white block. For these cases, a comparison of Sparse represen-
tation (SRC), Collaborative representation based classification (CRC), Robust
sparse coding (RSC), correntropy-based sparse representation (CESR), and our
method is shown in Fig. 4 and 5, and the comparison of the reconstruction error
rates is shown in Table 1. We compute the face reconstruction error rates by
Eerror = ∥X−B∥F /∥B∥F , where X is the reconstruction image. From Table
1, we can find that the reconstruction performance of NL1R is superior to the
other methods evidently.

Meanwhile, we can also see that SRC and CRC are not fit to recover the clean
images for the images with block image or composite noise. Thus, a suitable error
metric is very important for face reconstruction.
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Table 2. The maximal recognition rates(%) of SRC, LRC, CRC, RSC, CESR and
NL1R on AR database

Cases SRC LRC CRC RSC CESR NL1R

Clear 99.2 86.8 98.9 99.0 92.2 99.7
Glasses 95.1 93.2 92.9 96.7 95.0 96.7
Scarf 66.2 30.7 63.7 64.3 33.5 73.3

Table 3. The maximal recognition rates(%) of SRC, LRC, CRC, RSC, CESR and
NL1R on the extended Yale B face database

SRC LRC CRC RSC CESR NL1R

94.0 94.3 81.9 94.2 68.8 97.5

6.3 Recognition with Real Face Disguise

In this experiment, we mainly test the robustness of NL1R in dealing with real
disguise on the AR database. Twenty-six face images of these 120 individuals
are selected and used in our experiment. Eight images of them are used for
training, which vary as follows: (a) neutral expression, (b) smiling, (c) angry,
(d) screaming, (e)-(h) are taken under the same conditions. Eighteen images of
them are used for testing, but we will set three different cases: (1) face images
without occlusion (or clear images): Images from the testing set vary as
follows: (i) right light on (j) left light on (k) all sides light, (l)-(n) are taken
under the same conditions. (2) face images with glasses: Images from the
testing set vary as follows: (i) wearing sun glasses (j) wearing sun glasses and
left light on (k) wearing sun glasses and right light on, and (l)-(n) are taken
under the same conditions as (i)-(k). (3) face images with scarf: Images from
the testing set vary as follows: (i) wearing scarf (j) wearing scarf and left light
on (k) wearing scarf and right light on, and (l)-(n) are taken under the same
conditions as (i)-(k). Thus, for each case, the total number of training samples
is 840.

In all cases mentioned above, SRC, LRC , CRC , RSC , CESR and the NL1R
proposed are, respectively, used for image classification. Here, we can choose the
balance factor α ∈ [0.00001, 0.5] and the regularized parameter β ∈ [0.5, 3].The
maximal recognition rate of each method is compared in Table 3, where the
second, third and forth line correspond to the cases (1), (2) and (3), respectively.
From Table 2, we can find that NL1R gets the better performance than state-of-
the-art methods. For example, CESR only achieves 33.5% for the facial images
with scarves, but our method is 73.3%. This experiment means that nuclear-L1

norm fits better to characterize real disguises.
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6.4 Recognition with Illumination

In this Subsection we test the advantage of our algorithm for illumination. The
first 16 images per subject are used for training, and the remaining images for
testing on the extended Yale B face database, where α is 1 and the regularized
parameter β is set to 0.05. Table 3 shows the results of some latest approaches
and our method.We can find NL1R achieves much higher recognition rates than
the other methods. The maximal recognition rates of SRC, LRC, CRC, RSC,
CESR and NL1R are 94.0%, 94.3%, 81.9%, 94.2%, 68.8% and 97.5%, respective-
ly. Compared to RSC, at least 3.3% improvement is achieved by NL1R, which
demonstrates NL1R is more effective to illumination for face recognition.

6.5 Recognition with Different Random Occlusion

In the first experiment, we use the same experiment setting as in [8], [12] to
test the robustness of NSC. Subsets 1 and 2 of Extended Yale B are used for
training and subset 3 is used for testing. The face images are resized to 96× 84.
Subset 3 with the unrelated randomly block image is used for testing (see Figure
6(a) ). Here, α and β is set to 0.00001 and 0.05, respectively. Figure 6(c) shows
recognition rates curve of SRC, CRC, RSC, CESR and NL1R versus the various
levels of occlusion (from 10 percent to 50 percent). From Figure 6(c), we can
see that the advantage of the proposed NL1R is more evident with the level of
occlusion increasing. Especially, when the occlusion percentage is 50%, NL1R
achieves the best recognition rate 95.2%, compared to 65.3% for SRC, 48.5%
for CRC, 87.6%for RSC and 57.4% for CESR. And for other occlusion percents,
RSC and our method achieve the similar results. But the performance of CESR
and CRC is very poor when the block is large, which shows these methods are
not suit to deal with this block occlusion case.

In the second experiment, we use the composite noise (pixel corruption plus
unrelated randomly block occlusion)(Fig. 6(b)) to further evaluate the robust-
ness of our method.We choose the optimal α = 200 and β = 0.00005, respectively.
Figure 6(d) shows recognition rates curve of SRC, CRC, RSC, CESR and NL1R
versus the levels of composite noise (from 10 percent to 50 percent). From Fig-
ure 6(d), we can see that when the occlusion percentage is 50%, NL1R achieves
the best recognition rate 40.8%, compared to 28.1% for SRC, 24.1% for CRC,
23.7%for RSC and 22.1% for CESR. The above experiments also illuminate that
nuclear-L1 norm is more suitable for large block occlusion and composite noise.

7 Conclusions

The characterization of noises is a significant problem in regression model based
face recognition. This paper presents a nuclear-L1 norm joint regression model.
Since L1-norm is good at characterizing sparse noises with the Laplace distri-
bution, and nuclear norm is suitable for characterizing image-wise structural
noises, our model fits more kinds of noises. This problem is solved by virtue of
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Fig. 6. (a) The face images with unrelated block occlusion; (b) the face images with
Composite noise; (c) the recognition rates(%) of SRC, CRC, RSC, CESR and NL1R
under the unrelated block occlusion percentage from 10 to 50; (d) the recognition
rates(%) of SRC, CRC, RSC, CESR and NL1R under the composite noise percentage
from 10 to 50.

ADMM. In addition, nuclear norm is employed as a metric to characterize the
distance between test samples and classes. Our experiments demonstrate that
the proposed method is more effective than state-of-the-art regression methods
for face reconstruction and recognition.
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